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EMISSION OF SOUND FROM TURBULENCE CONVECTED BY A PARALLEL
FLOW IN THE PRESENCE OF SOLID BOUNDARIES
by Marvin E. Goldstein and Burt M. Rosenbaum

Lewis Research Center

SUMMARY

A theoretical description is given of the sound emitted from an arbitrary point in a
parallel or nearly parallel turbulent shear flow confined to a region near solid bound-
aries. The analysis begins with Lighthill's formulation of aerodynamic noise and as-
sumes that the turbulence is axisymmetric. It leads to equations which predict the
directivity patterns of the spectral density of the intensity of the sound emitted from a
unit volume of turbulence located at an arbitrary point within the flow in terms of certain
correlation-length scales of the turbulence. In order to apply these equations to predict
the sound field emitted from a complete flow, it would be necessary to integrate the
results over the flow field. Specific results are obtained for the sound emitted from an
arbitrary point in a turbulent flow within a semi-infinite open-ended duct. An experi-
ment which could be used to verify these results is proposed.

INTRODUCTION

Since STOL transport aircraft are intended to operate in densely populated areas,
it is necessary to give considerable emphasis to the problem of noise reduction in the
development of these aircraft. Most STOL aircraft depend for their performance on
lift augmentation devices which involve high-velocity turbulent flows along solid sur-
faces. It has been found (ref. 1) that the presence of such surfaces can result in a con-
siderable increase in noise production.

In this report we shall attempt to obtain some insight into the effect of solid bound-
aries on the process of aerodynamic sound generation and at the same time make some
progress toward developing techniques for predicting such effects analytically. To this
end we shall develop theoretical formulas for predicting the sound emitted from a unit
volume of turbulence located at an arbitrary point in a nearly parallel turbulent shear



flow confined to a region near one or more solid boundaries. Typical configurations to
which the analysis applies are shown in figures 1(a) and (b). It should be emphasized
that the analysis, by itself, only relates the sound field generated by the turbulence at
an arbitrary point in the flow to the turbulence correlation length at that point. In order
to use this analysis for actually predicting the sound field from a given flow, it is neces-
sary to integrate the formulas over the entire region of turbulence generating this sound.
Since the turbulence correlation length appears under the integral sign in this integra-
tion, it is necessary to know this correlation length at every point of the flow in order to
predict the sound field. However, determining the distribution of this correlation length
is in itself a difficult problem, and it will usually be necessary to rely heavily upon ex-
periment for this purpose. Nevertheless, the formulas obtained can be used (even when
the distribution of the correlation length is unknown) for studying the effect of the solid
boundaries on the sound field from the turbulence located at any individual point within
the flow.

The analysis begins with Lighthill's model for the sound emission from turbulent
shear flows (ref. 2). The turbulence is assumed to be locally homogeneous and axisym-
metric; that is, the statistical properties of the turbulence are independent of rotations
about the direction of mean flow. However, they can be different in the direction of
mean flow and the directions perpendicular to the mean flow. The analysis is carried
through by introducing an appropriate Green's function for an arbitrary geometry and
then using the symmetry properties of the turbulence to transform the result into a
manageable form. It is then shown how the reciprocity principle can be used to simplify
the problem of finding the Green's function for the case where the observer is in the far
field. The final result of this analysis is a set of formulas for the spectral density of
the far-field intensity of the sound emitted from a unit volume of turbulence located at
an arbitrary point in the flow. These formulas can be interpreted as the sound field
from a particular sum of statistically independent convected quadrupoles (with certain
coupling terms) whose strengths are determined by the statistical properties of the tur-
bulence.

A particular lift augmentation device which is being considered for use in STOL
aircraft is the augmentor wing ejector flap shown in figure 2. This flap is fed (blown)
through the duct in the wing, as shown in the figure. The high-speed jet issuing from
the wing into the flap (at point 1 in fig. 2) is a potentially important source of noise with-
in the flap. The effect of the flap boundaries on the sound emission from this noise
source can be important.

Motivated by this problem, we applied the general analysis previously described to
predict the noise emitted from a unit volume of turbulence located at an arbitrary point
within an open-ended semi-infinite duct. The Green's function needed for the solution
to this problem is obtained by transforming the boundary-value problem which deter-



mines this function into one whose solution is known. The turbulence properties which
are used in this example are taken from observed results for the mixing region of jets.
This is done in order to relate the analysis to the noise emitted from the turbulence in
the high-speed jet from the duct in the wing into the flap. It must be emphasized, how-
ever, that in order to use this analysis to predict the noise from the jet mixing region
in a complete augmentor wing, it is necessary to know the distribution of correlation-
length scales within this region and to integrate the results over the entire region of
turbulence. In addition, in any real augmentor wing there will be additional noise
sources such as the mixing region between the flow leaving the flap and the exterior flow
about the wing and the possible noise source due to the flow entering the flap from above
the wing. However, the general analysis is also capable of dealing with many of these
additional noise sources, provided enough details of the turbulent flow are known. Thus,
the present analysis, by itself, certainly does not give a complete solution to the prob-
lem of predicting the noise from an augmentor wing jet flap. Nevertheless, it does pro-
vide a necessary first step toward this goal. In addition, numerical results are pre-
sented for the directivity patterns of the spectral density of the far-field intensity
emitted from a unit volume of turbulence located at various points within the duct.

These results show how the sound emission processes and the geometric effects of the
duct interact. It also shows how the elementary sources of sound, that is, the individual
turbulent eddies, contribute to the sound field. An experiment which should permit
comparison with the computed results is discussed.

In order to help differentiate which aspects of the sound field are caused by the con-
vected quadrupole nature of the turbulent sound sources and which aspects are geometric
effects of the solid boundaries, results are also presented for the sound emission from
a simple monopole source located within the duct.

FORMULATION

We shall consider the sound emission from a nearly parallel turbulent shear flow
confined to a region near solid boundaries. Typical configurations are shown in figure 1.
The mean velocity is taken to be in the y1- direction, and it will be assumed that it var-
ies only in the yz—direction. We begin with Lighthill's equation (ref. 2) for aerodynamic
noise generation

2
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where
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(All symbols are defined in appendix E.) Since aerodynamic noise generation is usually
of interest only at very high Reynolds numbers, Lighthill (ref. 2) neglected viscous ef-
fects. Following Ffowcs Williams (ref. 3) we shall suppose that viscous effects can
also be neglected even when solid boundaries are present. We can therefore set Py
equal to péij. We shall also neglect (ref. 2) the effects of heat conduction so that

2
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Finally, we suppose that (ref. 2)

PViVi & PoViV;

This assumption amounts to neglecting the direct effects of convection and refraction of
the emitted sound by the mean flow and of the scattering of the emitted sound by the tur-
bulence.

When these approximations are introduced into equation (1) we obtain
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where
T35 = PoViY; (3)

In order to ensure convergence of the integrals to be encountered, we shall suppose that
Tij =0 for t> T, where T is some large time interval which will be put equal to in-
finity at the end of the analysis.

We shall suppose that the solid boundaries are rigid so that the normal velocity
v, = Vil (where n; is the ith component of the unit normal directed outward from the
turbulent region at the solid boundaries) vanishes at the boundaries. With viscous ef-
fects neglected, the equation for the normal component of momentum at the solid bound-

aries becomes
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The first term is zero. The middle term can be shown to be equal to (1pv2/R), where
R is the radius of curvature of the boundary surface in the direction of the motion and
where the negative sign holds when the boundary surface is concave inward along this
direction and the positive sign holds when it is convex inward. Thus, we get

We shall assume that the surfaces adjacent to the regions of turbulent shear flow
are relatively flat; that is, R >> h, where h is a characteristic length representative
of the distances between boundary surfaces (see fig. 2). Then sz/R ~ 0 for surfaces
adjacent to the flow. We shall also suppose that, at the surfaces outside the regions of
turbulent shear flow, the acoustic approximation applies; that is, the terms involving
the square of the velocity are negligible. Hence,

ni-a£ =n- Vp~0 (on solid boundaries) (4)
ay.
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that is, the normal derivative of the pressure essentially vanishes at the solid bound-
aries.

It is convenient to work in terms of the Fourier transforms (with respect to time)
of the variables. Hence, we put
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Then equation (2) becomes
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where
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is the wave number. Then the boundary condition (4) becomes
n+ VP=0 (on solid boundaries) (9)

The boundary condition at infinity is that P represents an outgoing wave.

The solution to this problem (eq. (7) with boundary condition (9)) can be written in
terms of the Green's function G, whose normal derivative vanishes on the solid bound-
ary. Thus,

R i azTi. _
P(X) = G(xly)a al dy (10)
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where 7/ denotes the volume outside the solid boundaries
v2 4+ k2)G = -6(% - ¥) (11a)
X
fi. V_.G=0 (onsolid boundaries) (11b)

X

where Vi = 82/ axiaxi and G represents an outgoing wave at infinity. Differentiating

X
by parts shows that
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Hence, the divergence theorem shows that equation (10) can be written as
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where & denotes the solid boundaries. But since
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the requirement that the normal velocity vanish at the solid boundaries shows that the
last two surface integrals on the right side of equation (12) vanish. And since the cur-
vature of the solid surfaces adjacent to the region of turbulence (i.e., where Tij is
nonnegligible) vanishes in the flow direction, the rate of change in the normal vector in
the direction of flow (v]./ |¥ )3/ ayj)x'f is perpendicular to the flow direction v/|v|.
Hence, it follows that
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But since the second derivative is along the surface and v is identically zero on the
surface, the remaining surface integral on the right side of equation (12) also vanishes.
Hence, equation (12) becomes
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Although the integral is formally over all space, it need only be carried out over the
source region.
The spectral density of the intensity in the far field is

Iw(;'{) :.L@E

2TcopO

where T is some large period of time such that Tij can be considered to be zero out-

side the time interval (-T, T), which is of duration 2T. At the end of the analysis, the
limit will be takenas T - «,

(T X =y 2 . -, 9 —-——
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j

Now upon using the fact that the Fourier transform of a convolution is proportional to
the product of the Fourier transforms of its components and the fact that the Fourier
transform of f(-t) is the complex conjugate of the Fourier transform of f(t), provided
f(t) is real, it follows from equation (6) that

- -, 2
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where
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is the fourth-order two-point two-time velocity correlation tensor.



TURBULENCE CORRELATION FUNCTIONS

The following development closely parallels that given in reference 4. Since the
mean velocity U(yz) is assumed to be in the yl—direction, the velocity v; can be ex-
pressed in the form

Vi(?:t) = GilU(yz) + ui(i’.’ t)

where u; is the turbulent (fluctuating) component of the velocity.
Upon introducing this into equation (16) we find that

ey R @ LG S D] an

where we have put

i §= -7 (18)
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The double primes indicate that the quantities are to be evaluated at y'' = " + n and
t + 7, while the primed quantities are evaluated at y' and t. Notice that /eukz y',7)

is independent of 7. Hence,

L L G ) 0= o,

where 06(w) is the delta function.



At zero frequency the inhomogeneous Helmholtz equation (11a) reduces to Poisson's
equation. For |>'<'| >> l?! (i.e., in the far field), the delta function vanishes, and the
Green's function of the resulting Laplace's equation is independent of the source location
y. Hence,

9 _ 5 at w=0
ayi
But this implies that
5(w) 28 =0
ayi

It therefore follows that, when equation (17) is substituted into equation (15) and the re-

sult is substituted into equation (14), the term R(iglll(i',ﬁ ) makes no contribution to the

integral. Hence, upon making this substitution and changing the variables of integration
from y' and §'' to ¥' and 71 for the integration over /z(iljl){l and from y' and y"'

to y'* and 7 (1) for the integration over ﬁ(izjl)(l’ we find that

2= 2 % = - .
1E) =0 PRI G RIT ) pll) 5,7, me T ar o o
w P gt ij T
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where 7/2 denotes the appropriate volume for the double integration over the variables

7' and 7 (which is the same as for the integration over the variables y'',on (1)). But
since the variables y'' and 'ﬁ(l) in the second integral are variables of integration, we
can replace them by y' and 7, respectively; and since i, j, k, and ! are dummy
indices, we can interchange the indices i and k and the indices j and ! without
changing the value of this integral. Thus, the second integral in equation (21) becomes,
after changing the variable 7 to -7,

—p s 2= - .

Po 32G* &|y") 2“GE |y + 1) 'Q(‘Z‘l){l(g;' 7, -el%7T dr dF dF"
Tog! "ot ij ’

4me {/2 ayiay]. G S
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Now, if it is assumed that the turbulence is stationary in time, the correlatlons must be
invariant under a translation in time. Hence, we can replace t in ﬁkll] y',1,-7) by

t + 7. It can now be seen that replacing y'' by ¥, n(l) by 7, and 7 by -7 in equa-
tion (20) merely interchanges the primed and unprimed quantities. Hence, it follows
from equations (19) and (20) that

R &7, 1 = R G 7, -7)

And upon inserting this into e%uation (22) we find (since the actual limits of integration
on the variables y'' and 7'/ are the same as those for y' and ﬁ'(o), respectively)
that the second term on the right side of equation (21) is the complex conjugate of the
first. Hence,

— -’ a * —. - —_ - -
1 (%) - 6|7 26" E|T 1) QL) 7, e 9T ar aF o
27rc ayi'ayJ aykayl

(23)

EXPANSION FOR LOW EDDY MACH NUMBER - CONVECTIVE AMPLIFICATION

We first introduce the new variable

where i denotes the unit vector in the yl-direction. Then

?'=§+ (fnl'TT)

Do s

Hence, if in equation (23) we put
Q(llj.l)(l(?’ "T: T) = ﬁ;jkl(?’ 7-'].’ + Rclkz(y ,77 » T)

where
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(24)
Rl]kl(y' 7,7) = 20" (6 Lk ul'{'u" + 61]u1uk 'l)
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and then change the variables of integration from y' and 7 to ¥ and 7 in perform-
ing the integration over @;jkl’ we obtain

‘y +_ nl——;n>SZG*(;("§+—;{1)1+—liﬁ.)
%o fe - 2 X Ry 7,7, 7)e7 9T dr ay dif
27rc cylay] VY,
202y 20k (7 T fon
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where the integral involving R icjkl was obtained simply by changing the name of the

dummy variable of integration from y' to y. Thus,

(26)

R = =
ijkz(y,n, 7) _2U(y2)|}311 J(y s Py ( ¥y +77,t+ 'r)ul(y +,t+ T+ 611\11( Dupy + 0, t+ Ty +7,t+ 7)]

The symbol Wz always denotes a given volume of space even though the specific limits
for the transformed variables can be different.

If the mean flow were zero, the correlation functions R ]k?(y n, 7) and ﬁl k7 v, 77, )
would decay rapidly as functions of 77 relative to a characteristic length of the region of
flow and the characteristic wavelength associated with the eddy decay time; and it would
be possible (as will be seen) to neglect variations in G over the range of 7 where R ijki
and /21 Kl are nonzero. However, in the case where there is a mean flow (see ref. 5),
the correlatlons at points along the direction of flow can extend over long distances com-
pared with the wavelength associated with the eddy decay time since the eddies are moving
with the flow and their apparent decay time is quite short. In order to allow for this, we
introduce a set of coordinates which move with the turbulent eddies. Thus, we introduce
the new variable

E= 7 - U lyy)T (27)

12



where ﬁc’ which is in the ¥q direction, is the convection velocity of the eddy. The
moving-axis correlation functions are now defined by

R;jkl(g;’ g, T) = ﬂ;jkl (5’.,77: T)
(28)
Rf]kl(y g T) = /Qljkl(y n, T)

Then upon introducing the change of variable (27) into equation (25) we get
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®) 2 2 IR G, 1e97 47 4f oF
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G*EI|¥y+E+U,7) I - (29)
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Fy By aykayl

Now let ! denote a typical correlation length (eddy size) of the turbulence, let Te
denote a typical decay time of the turbulence in the moving frame, and let Me be the
Mach number characteristic of the turbulence. It is shown in reference 6 (see sec. 3,
eq. (17)) that

_L_NM
fo

In turbulent shear flows the characteristic turbulent velocity is about 1/10™ of the mean
flow velocity. Hence, for subsonic flows

B A
TCo At

Thus, the eddy size is very small compared with the wavelength Af associated with the
eddy decay time. For pipe flows and internal flows in general, the eddy size is very
small compared with a typical dimension h of the boundaries (see fig. 1). Hence, we
shall suppose that

I<<h

The two length scales which appear in the Green's function G (when the observation

13



point is in the far field) are Ag and h. Thus, it is expected that the Green's functions
G(??lg; .1 it - 1 E), G*EI[y + £ + ﬁCT), and G*(i’l? + 2 i AT 7) will change
2 2 2 2 ¢

only slightly when E varies over the range 0 = |§ | = [{. But by definition
R'{jkl(?,g, 7) ~ 0 and Ricjkl(gr’, E’, 7) = 0 for |E| > 1, so that we can neglect variations
in the Green's function insofar as the integration with respect to £ is concerned. In
addition, we can carry out the integrations with respect to E over all space and the
integrations with respect to ¥ over the volume £/ exterior to the solid boundaries.
When the approximations are introduced into equation (29), we obtain

- Pg 26E|7) ® 2G* X7 + U,7) . -
1) = Re Y Chi [Ri.kl(y,i,f)
TTCO ]

v /

2 ayiay]' aykayl

+ Ry 7,8, ] dE draF  (30)

where the omission of a symbol for the limits of integration denotes that the integral is
to be carried out over all space.

We let 1 w(i’ |¥) denote the spectral density of the intensity at the point X due to
the sound emitted from a unit volume at y (ref. 7). Then

1) f?/ 1,E]7) a7

and it follows from equation (27) that

o= P - . = - -

1,&|¥) -3 > Re Gij(y)fe 1T GE 4 Ucﬂ/[R;jkl(y,z,m Rfjkl(y,gm)] dt dr
mc

0

(31)

where

%6 &Y
Gyi(¥) = ————
ayiayj

Now it follows from equations (19) and (28) that

14



/[R;jkl“;’g’ T) + Ricjkl(;:’ E; ‘T)] dg :_/ﬁi]'klﬁl.’ g; 7) dg

£ L . - . - N oo N
+ / U<Y2 - ?> U <YZ *—2— [6liélknjl(y’§ yT)+ éljéllRik(y’E ,T) + 261j61kRil(y'E ’ 7)] d¢

+ 2U(y2)/[o“ﬁj’kl(;,§’, 7+ 0y 8 1,78, ] df (32)
where
Ryjpp 7 £ 7) = Ujufuey’ - W ey 33)
Ry(¥,E, 7) = ufu]" (34)
ﬁi,jk(i, E,7)= ui(?,t)uj(gf’ +7,t+ Ty +7,t+ 7) (35)

The first two integrals on the right side of equation (32) represent the self noise and the
shear noise, respectively (refs. 8 and 9). The last integral in equation (32) represents a
coupling between the shear noise and the self noise.

LOCALLY HOMOGENEOUS TURBULENCE - VANISHING OF COUPLING TERM

It is shown in reference 4, under the relatively mild restriction that the turbulence
is approximately locally homogeneous and incompressible, that the coupling term be-
tween shear noise and self noise in equation (32) vanishes. Hence, after the names of
the dummy indices are changed, equation (31) can be written as

e P © -
I = Re|G..(¥ “lwTex (v /"' v,E,7)dE
JE[¥) P [G”(y) L e VIGL T + Upn) f Ry, 0E, n dT]

[}

2 o 7 er o = ; E\e = -
+—Re Gn(y)/ G +Uc7)/U<y2+7”‘>U(y2-?2> @ E, ) df ar (36)
o - 00
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The first term in this equation is the self-noise term and the second is the shear-noise
term.

Equation (36) cannot be further simplified without making additional assumptions
about the turbulence.

REPRESENTATION OF FOURTH-ORDER CORRELATIONS
IN TERMS OF SECOND-ORDER CORRELATIONS

It is argued by Batchelor (ref. 10, section 8.2) that the part of the joint probability
of the velocity (with zero time delay) associated with the energy-bearing eddies is ap-
proximately normal, at least insofar as the velocities at two points are concerned. This
approximation is better for some purposes than for others. For example, this approxi-
mation gives reasonably accurate predictions about the relation between the second- and
fourth-order correlations (ref. 10, p. 176). This relation is found to be (ref. 10,
eq. 8.3.11)

ui’u].'ul'{'uz' = ui'u].' u}'{'u'l‘ + ui'ui{' uJ!ul" + ui’u'l' u]!ul'(' at 7=0 (37)
But by extending the reasoning used by Batchelor in section 8.2, we can argue that, when
the velocity correlations are separated in time as well as in space, their correlation will
be subject to even more random influences from the neighboring flow than when they
occur at the same time. These influences will, according to the central limit theorem,
tend to make the joint probability distribution more normal. Hence, we expect equa-
tion (37) to be even more nearly valid when 7+# 0. Then in view of equations (33) and
(34) we can now write

~ — oy

Inserting this into equation (36) and changing the dummy indices gives

~1=, P - L - = ~ —
Iw(x|y) :n_cq_ Re Gij(y) A e 1(""TGI’:l(y + UCT)/RikRjZ dE dr
o)

2p o - ~

+—2UKRe Glj(if’) / e‘“"TG’{Z(y‘+ Ucv)/U'U"le df dr| (39)
ne ~ 00
6]
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where U'=1T y2--2— and U'"=U y2+? .

AXISYMMETRIC TURBULENCE - QUADRUPOLE CORRELATIONS

It can be seen from the measurements presented in references 11 and 12 that, at
least for jet mixing regions, it is reasonable to assume that the moving-axis correlation
tensor ﬁi].(il', é’, 7) is a symmetric function of 7. Thus, figure 27 of reference 11 shows

that FN{H(?, fgl, 7) peaks at 7 = 0, and figure 13 of reference 12 shows that this function
is fairly symmetrical about 7 = 0. (Notice that in this figure the lines §1=constant are
parallel to the dashed line.) Hence, we assume that ﬁij is an even function of 7. We
shall also assume that the turbulence is axisymmetric about the direction of mean flow.
Then it is shown in reference 4 that ﬁij is an axisymmetric tensor of the form

ﬁij(gf,g’, 7) = b4k + BOyy + C8y;0,4 + D(By k5 + 6y:E;) (40)

where the coefficients A, B, and C are functions of y, 7, and £ = ng + gg + gg

and are even functions of 51 ; and where D is a function of y, 7, and 1 and an odd
function of glo
In order to evaluate the first term on the right side of equation (39), observe that

/RikRjZ dg =/{A£i‘ék + BOyy + €801y + D(646, + legi)]
X [AEJ-EZ + Béjl + Céljéll + D((SljgZ + 51l£j)] df (41)

All the products of the coefficients A, B, etc. which occur in the integrand are even
functions of £2 and 1;3 and either even or odd functions of 51. (In fact, they are all
even except those terms which consist of products of D with either A, B, or C.) But
since any integral of an odd function of gi for i =1, 2, 3 is equal to zero, it can be
seen by inspection that only terms which have two pairs of equal indices can contribute
to the integral. Hence, the integrals must be of the form

_/RikRjZ d¢ = aikaijﬁkl + bijéikojl + cijailéjk (no sum on i, j, k, or ) (42)
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Therefore, upon noting that Gij = Gj i and interchanging names of dummy indices we
find that

— * o~ _ b 3 %*
Gy )G (v + UCT)/R,kR]l df = a3 Gy (V)G (¥ + Upm) + (bys + €50G;5(y)Gy5(y + U7
(43)
It is convenient to define
GLF)=G:F + U 1) (44)
ij ij c

This shows that the coefficient a of GiiGlrfk is the sum of all terms in

/ﬁikﬁjl df with i =j and k = . Similarly, the coefficient bij + €5 of GijGrin‘ is

the sum of all terms in /ﬁikﬁjl df with k and ! equalto either i or j. There is

a certain ambiguity in the definition of Ay and bij + Cij since those terms in

/ ﬁikﬁj ) df with all four indices equal can be included in either or these terms. But

once ay is defined, bij +cC
that

ij is unique. These results are used in appendix A to show

Giijl/Rikle df’ = Giiij_/Rlz dé

T T, 52 2. . T (=2 =2
+ (GypGag + G330'22)_/.“‘23 - Rip)dE + G11‘311/(1‘11 - Rigp)df

T T, [%2 .8 &
+2(GypGyg + G13‘"13),/‘“‘12 + RyyRyp) dE

oY -

T T, [ &2
+ (Gyglgp + G33‘333)/‘(322 - Rip)

+ 2G23G23f(R22 - Ryg)dt

Applying the reciprocity principle to (11a) shows that for X%y

2
Gii = -k"G

18



Hence, the first term in equation (39) can be expressed in terms of the relation

T 5 8 a5 1 4.nT T T T
Giijl/Rikle df =k'GG™S - (GypGgg + G33Gap)Qp3 - Qpp) + Gj;Gj;Q;;  (45)

where

Q5 = (46)
and

|
Q1 =f(ﬁ%1 - Ry af

Q2 = Q3 =_/(§§2 + By Rop) dF

- (47)
~2 &N =
Q2 = Q3 =f(R22 - Rig) dé
Qs =f(ﬁ§2 - fig) df
e
S = / ®2, af (48)
=/ B2

These five integrals depend on the four correlations ﬁll’ ﬁzz, ﬁlz’ and §23.
Turning to the second integral in equation (39), we find from equation (40) that

TNk T TT 0y T o_ T PrTY
+ D(E;y, + glalj)] df (49)
It is shown in appendix B that this equation can be simplified to obtain
G,:GY, [ U'U"R., dF = G..GL. [ U'U"R., aF (50)
15711 il 1j71j i
It now follows from equations (39), (45), and (50) that
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X|7) =1 &|F)ge + 1, & Vg (51)

where the self-noise term is

TTCO

e o ©
1 [¥)gq =2 Re [k4G 4 e iwTgTg g,
_foo (GooGL. + GonGao)(Qon - Qoq)e 1T d7
/.. 22733 T Y33h9p/ g3 - Koo

o0
-iwrAT
+ Gij ‘/:O e GijQij d’T} (52)

and the shear-noise term is

oo
>?|Y sh = —— ﬁeG e—leG].]/U'U"Rjj dg dr (53)
0

The last term in the self-noise term (52) is a sum of the intensities from independent
quadrupoles. The first term is the emission from a monopole source (weighted accord-
ing to wave number), and the second term is a coupling term between the two longitudi-
nal quadrupoles transverse to the mean flow. The shear-noise term just consists of
the sum of three independent quadrupoles.

Equations (47) and (48) show that the self noise depends on the four correlation
functions Rll’ R22’ R12’ and R23 And equatlon (53) shows that the shear noise de-
pends on the three correlation functions Rll’ R22, and R33 However, it follows from
equation (40) that

Hence, the noise is completely determined in terms of four correlations of the turbu-
lence.
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ISOTROPIC TURBULENCE
The expression for the sound intensity can be further simplified if we assume that
the turbulence is locally isotropic in the moving reference frame. That is, we assume
that ﬁij is an isotropic tensor, 1 In this case, the correlation tensor (40) reduces to

ﬁij(g;’ g; T) = A‘Eigj + Bﬁij (65)

where A and B are functions only of ¢ and 7 (see ref. 10).
Upon defining the correlation-length scale L(y, 7) by

L, ) =—1— / RZ, of (56)
? 2

)

where V u2 is the rms turbulent velocity at ¥, we find from the results obtained in
appendix C that

—\2
Q; =1<u2) L for i,j=1, 2, 3
and
—\2
S =l(u2) L (57)

Equation (52) now becomes

- ., {5 4 o S
I,E|¥)ge =— (uz)2 RelX G f e 16T dr + G, / e 19TGIL dr
8nc, 7 Lo i Soo i

(58)

llt is shown in ref. 4 that the correlation tensor for isotropic turbulence must

always be an even function of 7. Hence, if we began with isotropic turbulence, it would

not be necessary to make any assumption about the time dependence of ﬁi i
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In order to simplify the shear-noise term, we use the results of appendix D, which
show that

-/-U'U"Rl1 dg =fU'U"R33 dg

and

/U'U”ﬁzz dE‘ = 0

If we define the correlation-length scale /(¥,t) by
£5,9=L fvuR, & (59)
2

where U denotes the velocity at ¥, then equation (53) becomes

2 2
4pOU u . T 0
- _ -iwT -iwr~T
Iw(x|y>sh——ﬁe[cllﬁe 6l L arvcyy [ e GT, L ar

o

(60)

Thus, once the Green's function G of the particular geometry has been found, equa-
tions (58) and (60) give the spectral density of the intensity of the sound field due to a
unit volume of turbulence located at the point of y as a function of the turbulence
correlation-length scales L and 2.

CALCULATION OF FAR-FIELD GREEN'S FUNCTION
General Case

Since we are only interested in the Green's function G(X |y ) when the observation
point X is in the far field, considerable labor could be saved in calculating the Green's
function if the far-field Green's function were calculated directly instead of the general
Green's function being calculated and then expanded for X inthe far field. This can be
accomplished by utilizing the reciprocity principle (ref. 13} which states that the Green's
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function with the observation point at X and the source point at y is equal to the
Green's function with the observation point at ¥ and the source point at X. That is,

GE|Y¥) = GF |X) (61)
Hence, it follows from equations (11a) and (11b) that
(v + k?)G = -6(x -) (62)

n- vgG =0 (on solid boundary) (63)

where 6(X - ¥) = 6(F¥ - X) and the differentiations are with respect to the variable y
instead of X. We now put

GE|Y) = gX|¥) + ¥(x|¥) (64)
where
g®|7) = ——L_ eik[Z-¥| (65)
4n|x - |

is the free-space Green's function. Upon substituting this into equations (62) and (63),
we obtain

(V2 + k2 T=0 (66)
n. vy =-fi. Vg (on solid boundary) (67)

Upon expanding |X - ¥ | for larger values of |X| we obtain

-

|i’-§’|=r—u+0(r'1) as r -«

where we have put

23



It is now convenient to express the location of the source point in terms of the
spherical coordinates shown in figure 3. Then

—

XY -y, sin g cos  +yy Sin 6 sin Y + yg cos 6

r
and
e®@|7) ~ L™ 6,y |7 (68a)
mr
where
8,0, ¥ |¥) = exp[—ik(y1 sin 6 cos ¥ + yg sin 6 sin Y + yg cos 9)] (68b)

represents a plane wave propagating in the (-X)-direction. Substituting this into equa-
tion (67) gives
1 eil~:r~

n- vVl =- n- Vg, (on solid boundary) (69)

4nr

It can now be seen that equations (66) and (69) possess a solution of the form

¥) =L e 6, v(7)

& l 4rr

where V¥ o is a solution of the boundary-value problem

(V2 + k3w =0 (70)

(¢}

fi- V& =-fi- Vg, (on solid boundary) (71)

and since ¥ represents an outgoing wave at infinity, this is the desired solution to the
problem. Hence, we can write

GE|¥) Zl" TG (8, v |7) (72)

mr

24



where
G0, W1¥) =g,0, W |¥) + ¥ (6, ¢ ]F) (73)

and g, is the incident plane wave (68) and ¥ o 1s the solution to the boundary-value
problem (70) and (71). It follows from this that G0 is the solution to the problem of a
plane wave from infinity incident on the solid boundary. By eliminatii:¢ *he dependence
on the variable r, the problem has been simplified.

Two-Dimensional Geometries

We shall now consider the case where the solid boundaries do not change their shape
in the y3—direction. Thus, the unit normal vector n lies in the ylyz-plane and

R o 5]
fl-V=n —+ny— (714)

Y4 ¥

The general Green's function of this boundary-value problem is still three dimensional.
However, the far-field Green's function can be simply expressed in terms of the solu-
tion to a two-dimensional boundary-value problem. Thus, it follows from equations (68)
(70) to (72), (73), and (74) that G, takes the form

b

- —iky3cose
Go(6, ¥ |¥) =e Gy(¥ |yysvg) (75)
where
-ik (ylcoszp+yzsimp)
G]_(‘P|Y1, Yz) =e ° + (PO(WIYI, Ya) (76)
k,=ksin 0 (1)

and the function ¢ o is determined as the solution to the boundary-value problem

2 .2
e, =0 (78)
2 .2
ayl 8y2
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R R —iko(ylcoszp+y2singb )
Ai- Ve, =-fi- Ve (on solid boundary) (79)

It can be seen from equations (76) to (79) that G1 is the solution to the problem of a
plane wave from infinity incident on the solid boundary. The wave propagates parallel
to the ylyz-plane and has a wave number ko'

SUMMARY OF GENERAL EQUATIONS

Before using these results to work out a particular example, we shall summarize
the general equations obtained so far.

The spectral density of the intensity of sound at the far-field point X emitted from
a unit volume at the point ¥ can be written as

1

|

V) =1 & |¥)ge + I, &gy (51)
e

self noise shear noise

Axisymmetric Turbulence

Self noise:

- Po 4 ~-iwTAT
Iw(xly)se=—@e[kG _’oo e G Sdr

TI'CO

® T T -iwT
- / (GgaGgg + Gg3Gag)(Qg3 - Qpple * 47

- 00

®  iwTAT
+ Gy; /; e 7G;Q;; d’T] (52)

Shear noise:

- 00

2p o .

el feong 0 -1WT T TID

I E Vg -2 ReGy; f e Glj/U Ry, dF dr (53)
8}
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Isotropic Turbulence

Self noise:
—\2
2
Tp <u 4 00 . o
1,&E|V)ge =— Re l‘-—G/‘ e 1w1gTy, d7+G../ e 1wTgTL 47
@ se 8nc 7 - o0 1) J o ij
o)
(58)
Shear noise:
2.2
2p U%u © 0
TTCO 0 - 00
(60)

where

_9%6,&7)

i ayiay]'

and the far-field Green's function G is determined in terms of the incident plane wave

problems by

General case:

GE|§) =L elkr[go(e, YIF)+ ¥ 6, v I?)] (80)
4nr
g, = exp[—ik(y1 sin § cos ¢ + yy sin 6 sin Y + yg €OS 9)] (68b)
(v + 1% =0 (70)
n-V¥ =-i.Vg, (onsolid boundary) (71)
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Two-dimensional geometries:

ﬁ-V:nl—-a—+n2i (74)
ay1 ayz
. ik(r-yqocos8)[ -ik_(y,cosy+y,siny)
GE|F)=—e 3 [e o1 2 - wo(wlyl,yz)] (81)
4nr
k, =k sin 6 (77)
2 2
L ik e =0 (78)
2 .2 °2)°°
ayl ay2
R —iko(ylcoszp+y2simp )
n-ve = -n - Ve (on solid boundary) (79)

For both axisymmetric and isotropic turbulence, the shear-noise term is the sum of
contributions from independent quadrupoles with no coupling between them. The self-
noise term, however, has this property only in the case of isotropic turbulence since the
second term in the expression for the intensity for axisymmetric turbulence is a coupling
term between the two longitudinal quadrupoles transverse to the flow. However, in the
case where the geometry is two dimensional, it is possible to express this term also as
a sum of independent quadrupoles. For in this case, equation (81) and the definition of

Gij show that

Ggg = —k2 cos26 G
and the differential equation (78) shows that

Gyq + Ggy + K2G = 0
Hence,

2

If this is multiplied by the complex conjugate of the corresponding equation for the time-
displaced Gll’ we find that
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T T 2 T 1

T T
(Gzszz - G11G11>
tan™6

And this shows that the coupling term in equation (52) can be expressed in terms of inde-
pendent quadrupoles.

A PARTICULAR EXAMPLE

We shall now apply the results obtained in the preceding sections to calculate the
spectral density of the intensity of the sound emitted from isotropic convected turbulence
confined between the two semi-infinite parallel plates shown in figure 4. In this case the
boundary condition (79) becomes

CL2N —ikoylcoswiikobsinw
= iko sin ye at yg = b (83)
ay2

The problem of a plane wave incident on two semi-infinite parallel planes subject to the
boundary condition (83) has been solved by using the Weiner-Hopf technique and is pre-
sented in reference 14. It is shown there that for |y2| = b (see eq. 3.25a in ref. 14)

©+if3

- )/b--icuy1 4

(S_ cosh ¥y + D_ sinh yyz)e a (84)

gpo _—_i
Ver

-0 +if

where the contour integral in the complex a = ¢ + i3 plane is carried out along any line
parallel to the o-axis with 3 in the range

-Imk < B <cosy Jmk, (85)
and it is assumed for purposes of obtaining the solution that ko has been extended into

the complex plane so that it has a positive imaginary part. At the end of the calculation
the imaginary part can be set equal to zero. In equation (84),

7(@) =‘/ o? - K2 (86)
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where the branch cuts are chosen as indicated in figure 1.1 of reference 14. Also,

k, sin Y cos (k b sin v)
D (87)

) r (k + k cos ) 1/2 k cos Y )« 0)1/2K_(of)(oz - ko cos ¢)

ik, sin ¥ sin (k,b sin V)

S = (88)
E b(k0 + k cos zlx)LJr(kO cos Y )(a - kO)L_(oz)(a - k cos V)
xx vz tiab /9
K =e L ﬂ { (1/2)] i ‘“bn-(l/:z)}e " )
n=1
Fxgla)-T () 1/2 iab
Lay=e 2 &% [(1 - kibﬁ) 2 iabn]eﬂa n (90)
n=1
b
b ==
Y
b
bn-(1/2) :( 1)
- =\
2
Ti(a) _ 1b7 In (‘y + a)
m ko

where the imaginary part of the logarithm lies between -7 and 7.

Xl(a)=--il)—q— 1- C +1n +lab
T Zbk 2

Xg(@) __ iba <1- C,+ ln—2-77—>+l ab

T bk 2
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and L : satisfy the rela-

and C0 =0.5772 . . . is Euler's constant. In addition, K

tions
K, (2)K_(a) = e~ " cosh yb
(91)

L, (@)L_(e) = (yb) e™?® sinh 4b

at least within the strip (85) of the complex a = o + i plane. Using equation (86) with
the appropriate branch cuts shows that

y(k0 cos Y) = -iko sin ¥ (92)

Introducing this relation in equation (91) yields

ik bsiny .
K+(k0 cos xp)K_(kO cos ¥) =€ cos (kob sin )
ik bsiny ’ (93)
L, (k, cos )L_(k  cos ¥) =2 ——— sin (kb sin )
kob sin
W,

Upon substituting equations (88) and (89) into equation (84) and using equations (92) and
(93) to simplify the results, we obtain

-ik bsiny 1 +ip L_(k0 cos x//)(ko - k, cos v) -yb—iozy1
9, =¢ — e cosh Yo do
2ri L_(a)(a - ko)(a - k0 cos )
- +if
+ipB -yb-ia
1 K_(ko cos zp)(ko - k, cos \p)l/ze 1
+ _é__ 2 sinh Y¥gy da (94)
m
K (a¢)(a - k -
it (@)@ - k) (@ -k, cos ¥)

Now we are interested in the situation where the source point ? is within the chan-
nel. This corresponds to Y1 < 0. In this case, the contour integral can be closed in
the upper half plane. It can be seen by inspection that the branch cuts in the integrand
cancel and that the integrand has only poles in the upper half plane. Hence, it can be
evaluated by the method of residues to obtain
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—iko(ylcosw+yzsinw) . e-ikobsimp e-ikoyl) L_(k, cos V)
L_(k)

inw i‘Bn(bn'yl)

1 L_(k, cos )k, - kjcos y)e e s vy
1 LI (B o, (B - kB, - Kk, cos ¥) b

\p)

sin

i[n- i8 b .
1 Z K_(k, cos ¥)(k, - k, cos w)l/zel[n <1/2>]ﬂe1 n-<1/2>[ n-(1/2) Y1]

— [Bn-(1/2)]bn-(1/2)[3n-(1/2) - k0]1/ 2[Bn_(1 12) ¥ €05 ]

where

v=n Or V:n-._].‘.
> 2
n=1,2,3,..

and k0 can now be taken as real. The terms K' [Bn-(l/Z)] and L' (Bn) denote

bh-(1/2)

K-[Bn_(l /2)] and L_(B ), respectively, with the factor n =v omitted in the infinite

product:

Lab K_(@)
Kl[ﬁn-(l/z)] -|— e n-(t/2) -0
by (1/2) @ - Bh(1/2)

@=Fn_(1/2)
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Upon using these results in equation (81), we find that the far-field Green's function

becomes

ik(r- y3cose-bsinesinu/ )

-|= 1
G = —_ ( , 0 ) )
&) e G, 01y1,v
where we have put
-1k0y1 (0) t (95)
Gy, 6]y vy = M_(¥) + S
(k. cos ¥)
M (y)=
L_(ko) )
=1y 13 JJ COSZz--Z -if jI sin—yz—— for j =0,1,2
- -{1/2 ] =41,
1 L 4 bn [ n-(1/ ):] " bn—(1/2)
n=1 n=1 (96)

where S(lj) is the jth derivative of S(lo) with respect to Y1 and

~N

. ] ]

(—l)nK_(ko cos z[/)(ko - k0 cos xp)l/zelﬁn—(l/z)[ n-(1/2) yl]
. 1/2

K—[Bn—(1/2)]bn—(1/2)[Bn-(1/2) - ko] / [Bn—(l/Z) -k, cos %D]

iﬁn(bn- yl)

InE

> (97)

(-1)"L_(k, cos ¥)(k, - k, cos e
J =
! L!(8,)b (8, - k,)(B, - k, cos )

J

These results can now be used to calculate the various quadrupole source terms which
appear in equations (52), (53), (58), and (59). Thus,

ik(r- y5c086-bsingsiny )

G.(K|7) =L e
4

i Gii(¥,81y1,¥5) (98)
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where Gij = Gji’ and in view of equation (82)

_]_ky
G-m_e °1.s0

-

_'k y
.2 oY1 (@)
Gy = -kgM_e + 8§

—ikoy1

(13 = -ik cos 9[—ik0M_e + s(ll)] ” (99)

2
@9 = tan® Gaa - Gyq

Gy = -ik cos 6 S

-ik .y
033 = —k2 cosze[M__e 0’1 + S(lo)]
and we have put

- z ‘ (-iB, ) y z ‘ -ig ] y
353)5-71 L Jn sin—z- n-(1/2) In cos—z- for j=0,1
1 b, b, ez bn-(1/2) bn-(1/2)

(100)

We shall now restrict our attention to isotropic turbulence. In order to evaluate the
integrals in equations (58) and (59) to predict the self and shear noise, it is necessary to
know the dependence on 7 of the turbulence correlation lengths L and Zl. Chu
(ref. 11) has shown that for the mixing region of a jet 84L/874 and 84[/874 could be
fit fairly well with functions of the form Cq sech CyT COS CaqT (see fig. 37 in ref. 11).
We shall, for lack of better information about the turbulence, assume that relations of
this form also hold for the turbulence between the plates. 2 Thus, following Chu we put

2Actually, it turns out that the final results are quite insensitive to the details of the
models used for L and /.
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4
L. L(()IV) sech w§2)7 cos w,(.? W
874
> (101)
4
a—[ = .[(()IV) sech w§1)7 cos w,(kl)'r
874 J
where
L) _ (2%
° 4
07" /=0
2 _ (222
o
874 7=0

The time dependence in G and the Gl] is associated with the variable y{» which

only occurs in exponentials. Hence, the integrals over 7 which must be performed in

equations (58) and (60) can be found by specializing the constant a in the relation

i(w-U_a)7 1(w U.a)7
e L dr el E_Ld
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and in a similar relation for .Z.
We shall now suppose that the turbulent eddy is far enough from the end of the duct

so that the contribution to the integrals in equations (58) and (59) are principally from
the parts of the Green's function for the interior of the duct. Thus, for the case where
the eddy is moving toward the end of the duct, we suppose that the point ¥ is far enough
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from the end so that the eddy at y will decay before it reaches the end of the duct. Us-
ing values of the eddy lifetime typical of jets, we estimate that this will occur if the
center of the eddy is about 1/2 to 1/4 of the duct width from the end. When these results
together with equations (44) and (95) to (100) are used in equations (58) and (59), we find

—\2
2
- 70 \u 4 * *
1 &]¥) :A__)‘L(()Iv)ﬁe k 6’[0(2)] +gij[g§j2>] (102)

w

5 8ncg(4nr)2 7
2.2
- 2p U™u *
L& [F)gy - ——— L3V Re {011[9(111)] ¥ 013[0'(1%3)]*} (103)
7rcg(411r)2

(m) _ »(m)

where Oij = Gii for m =1,2 and

-ik y
(m)e o} 1+(m)s(1

&'(11:131) = -ik cos 6[—ikoM_D 1 )] for m =1,2 r (104)

2
G = tane By, - PG,
&’(223) = -ik cos 8 (Z)Séo)
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36



o I’

; ; y i Y 3 .
(m’S(lJ) 1 (—i,in)‘]JnA](]m) cos M ['i"n-(] 2)]]an£1n—]()l 9 sin z where {7 ° L2 for m 1
i bn - ’ bn—(l“'2) j-0,1,2 for m 2
nl n
(105)
. -ijs ) v I~i;f |J v (
«2)53) o1 n ',nA;z»S.m_z_ n-(1/2)] 1 AR) g 2 for | 0.1
; b b b ‘ n'n-(1/2) b
n n n-{1,2) n-(1,2)
n 1 n:1 y.
N
D(m) :—(——n———— scch —(7— [k(l - M(_ sin 7) + k(,m?| + sech T [k11 - Mc sin i) - kgmﬂ for m 1.2
m) o4 m) (m)
2kI (1- MC sin 1)k 2kf Zkf
A(vm) ( )__’—‘_ v sech z-‘ [k - Ms, - k(}“)] + sech )[k - M3, - k(‘mil for m 1,2 (106)
m m) (m
Zkf {k - M(.,JVD 2kf 21([ r
and
n
v 1 for n-1,2,3,. ..
n--
2
J
Here we have put
oim)
kgm) g
c0
(m)
[
(m) _ *
k* =
C
(0]
and
UC
Mc = — (107)
C
(6]

is the convection Mach number of the eddy.
The spectral density of the intensity of the self and shear noise can now be computed

by substituting equations (89), (90), (95) to (100), and (104) to (106) into equations (102)
and (103).

The expressions for Iw()'{'[ j;r')se and Iw(§|§;)sh become particularly simple when
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¢ =0 (i.e., in the plane of the duct). Thus, it follows from equation (97) that I,=J,=0

Equations (95), (96), (100), and (105), therefore, show that all the SU’and ™)s{)) are
equal to zero and M_=1. It can now be seen from equations (77), (99)and (102) to (104) that

Iw(i‘lgr’)se = at ¢ =0 (108)

and

& |F)g, = —2 °  kpWsin2s at y =0 (109)
nc2(4nr)2
DISCUSSION

Emission of Sound From Monopole Source of Unit Strength

Before considering the sound emission from a region of turbulence within the duct,
it is useful to consider the sound emission from a monopole source placed in various
locations within the channel. It is shown in reference 15 (ch. T) that the intensity of
sound in the far field from a harmonic monopole source of unit strength can be expressed
in terms of the far-field Green's function G by

K%p,c, |G| 2
mon 27

For the two-dimensional channel shown in figure 4, the far-field Green's function is
given by equations (95), (89), (90), (96), and (97). It can be seen from these equations
that |G| depends on 6 and k only in the combination

kozksinG

Hence, the number of curves necessary for presenting the results can be minimized by

plotting
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as a function of  for various values of the wavelength parameter

A __ 27
b sin & kb sin 6

and various values of the source location yl/b and y2/b. The geometrical relation of
the angles 6 and i to the duct walls is illustrated in figure 5. Holding 6 and r
fixed and varying iy corresponds to traversing the circle C in the observation plane p
parallel to the ylyz-plane. When 6 = n/2, the plane p is the ylyz-plane.

The directivity patterns are shown in figures 6 to 8. These figures are polar plots
of (4rrrb)2 sin29 Im Cm/pc o 252 function of the angle iy for various positions of the
source within the duct. In order to keep the scales of these figures reasonable, the fig-
ures are divided into three groups. The first group, figures 6(a) to (g), presents the
curves for wavelength parameters of 8, 6, and 4. The second group, figures 7(a) to (m),
corresponds to wavelength parameters of 2, 3/2, and 1. And the third set of curves,
figures 8(a) to (h), are for wavelength parameters of 3/4 and 1/2. The reason that the
intensities at ¢y =7 and § =-r are not equal is that the duct walls extend to minus
infinity and thereby separate these points.

It can be seen from figure 6 that for the long wavelengths the patterns are fairly
symmetrical, with the sound being radiated fairly uniformly in all directions. The
patterns become more uniform as the Wavelength increases. However, it can be seen
from equation (95) that only the first term makes any contribution to the far-field Green's
function G for very long wavelengths because the infinite sum S(lo) becomes very small.
But this term is the solution for the far-field radiation pattern of a plane wave traveling
down the duct from ¥ =~ (ref. 14). Notice also that this term is independent of the
vertical location Yo of the source within the channel, and the intensity Irn on 1S inde-
pendent of the coordinate yi- Hence, the far-field radiation pattern is independent of the
source location within the duct for long wavelengths.

The terms in the infinite sum Sl0 represent different modes which can propagate
within the duct. The first sum in equation (96) represents symmetric modes, and the
second sum represents antisymmetric modes. As ) decreases (i.e., ko increases),
the exponentials which enter these terms through equation (97) change from real to com-
plex (by means of BV) for successively higher order terms in the sums. This corre-
sponds to successively higher order modes propagating within the duct. Thus, as the
wavelength becomes shorter, more modes can propagate and, as shown in the figures,

39



the radiation pattern becomes more nonuniform. As each new mode comes into play,
the pattern changes markedly.

It can be seen from figure 6, that the first mode in the sum S(lo) becomes significant
when A/(b sin 8) =~ 4 if the source is off axis (y2 # 0). However, if the source is on
axis, it does not become significant until )/(b sin §) has decreased approximately to 2.
This is caused by the fact that only the symmetrical modes can propagate when the
source is on axis and these modes switch on at shorter wavelengths than the antisym-
metrical modes. This effect also causes the radiation pattern to be more complex when
the source is off axis (y2 # 0). Thus, as shown in figures 7 and 8, large lobes develop as
the source is moved from the axis towards the wall. It can be seen that as the wavelength
becomes shorter, the pattern becomes more complicated. However, the basic outlines
of these patterns tend to follow the line of sight from the source as the geometric acous-
tics limit (A << b) is approached. Actually, the wavelengths considered here are too
long to evidence strong geometric acoustics effects.

Emission of Sound From a Unit Volume of Turbulence Located

at a Point Within the Duct and Proposed Experiment

In the preceding subsection the emission from a monopole source within a duct was
discussed. In this section we shall discuss the results for the sound emission for con-
vected locally isotropic turbulence within the rectangular duct. This configuration was
chosen because of its resemblance to the augmentor wing ejector flap shown in figure 1.
However, it must be emphasized that the results given in this subsection do not by any
means represent the total noise emitted from an augmentor wing. They give only the
sound emitted from a unit volume of turbulence located in the mixing region within the
augmentor ejector. In order to find the complete noise pattern, it is necessary to inte-
grate these results over the entire interior of the flap. In addition to this, there are
other possible noise sources which can contribute to the noise pattern.

However, it is possible to propose an experiment which corresponds closely to the
present analysis. This experiment consists of placing a small intense jet at various
locations within a large wide duct and measuring the narrow-band intensity spectra in
the far field. Although it is anticipated that the lobes of the observed directivity pat-
terns will not be nearly as sharp as those predicted by the present analysis (due to the
fact that the source is not localized and that the microphones do not measure a narrow
enough frequency range), it is still felt that reasonable agreement should be obtained.

Discussion of equations. - It has been shown that the spectral density of the inten-
sity of the sound in the far field emitted from a point y within the duct can be ex-
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pressed as the sum of two terms. The first of these, Iw()'{ﬁ)se, is called the self
noise and represents the noise emitted by the action of the turbulent eddies with them-
selves. This term is given by equation (102). It is proportional to the sum of the in-
tensities of all six independent quadrupoles corrected for convection effects by the mean
flow. (Notice that the first term is really a simple source, but it is by virtue of equa-
tion (99) proportional to the longitudinal quadrupole with axis in the y3-direction. ) As
in the case of jet noise, this term is also proportional to the fourth-order two-point tur-
bulence velocity correlations which are accounted for by the factor Lgv).

The second term contributing to the far-field intensity is the shear noise Iw()_{ I v )sh’
which represents the sound due to the action of the turbulence on the mean shear. It is
given by equation (103). It can be seen that it is proportional to the two longitudinal
quadrupoles suitably modified by convection effects in the directions perpendicular to
the velocity gradient (y1 and Y3 directions). This term is also proportional t_o the
second-order two-point turbulence velocity correlations, as well as the mean-square
velocity. The turbulence velocity correlations are accounted for by the term [OIV).

In the plane 6 = 7/2 (shown in fig. 5), a number of the quadrupoles make no con-
tribution to either the shear or self noise. The reason is the cos 6 dependence of
these quadrupoles, as shown in equations (99) and (104). Thus, the shear noise is sim-
ply proportional to the longitudinal yl-direction quadrupole. An inspection of the equa-
tions for 6 = 7/2 shows that this quadrupole also tends to dominate the self noise at
low frequencies.

It is also of interest to have expressions for the intensities in the y1y3-plane, which
is perpendicular to 6 = n/2-plane, as shown in figure 9. This corresponds to setting
¥ equal to 0 and letting 6 vary. The expressions for Iw(ily)se and Iw()?)if)sh for
the case where y =0 are given by equations (108) and (109), respectively. These
equations take on particularly simple forms. The directivity behavior of the self noise
is strictly through the term D(z), whereas the directivity of the shear noise is through
the terms D 1 sin29. The terms D(l) and D(z) are given by the first of equations (106).
They contain the same convective amplification factor (1 - M ¢ Sin (6;))'4 that( 2a)ppears in

and D

strictly by the convection of the sound source. The results can also be shown to be con-

jet noise (ref. 7). In fact, the angular dependence of the terms D is caused

sistent with those obtained by Ffowcs Williams in reference 3.
Organization of plots and choice of parameters. - The shear- and self-noise terms

- = 6 2
Iw(x ‘ y )Se87rco(47rr)

L \2
0 O(uz) LgIV)
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and

Iw()? l ?)shﬂcg(‘lﬂr)z

2;'2 _Z’(()IV)

2p 0U

are plotted as a function of the azimuthal angle ¢ for 6 = 7/2 in figures 10 to 16 and
for 6 = n/4 in figure 17. They are plotted as a function of 6 for ¢ =0 in figures 18
to 22. These variations correspond to varying the observation point in the far field in
the three planes shown in figures 5 and 9. These directivity patterns are influenced by
the wave numbers of the turbulence which emits the sound. In the present model the
turbulence spectra are characterized by the parameters k%m) and k,(km) for m =1or
2 (compare eq. (101) where the corresponding frequencies are defined). For the self-
noise m equals 2, whereas for the shear noise m equals 1.

In reference 11, it is found that the turbulence data for round jets were best fitted
by taking

b k) ~ 5.4 M,

where M, is the jet-exit Mach number and b is the jet radius. For lack of better
information, these relations will also be used in the present case. We shall suppose
that M, is the exit Mach number of the flow into the duct. For example, for the aug-
mentor wing shown in figure 1, M, might correspond to the velocity of the jet entering

the augmentor flap at point 1. Again, as in a jet, we shall relate the eddy convection
Mach number to M, by assuming that
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Figures 1 and 4 show that it is appropriate to take M c a8 positive for modeling the
sound coming from the rear of the augmentor wing exit, whereas it is appropriate to
take Mc as negative for modeling the sound coming from the opening in the front of the
flap (entrance). Therefore, results for both these cases are presented. For the sound
from the front of the flap, it would seem appropriate to choose bO equal to the width of
the passage at point 1, which is approximately 1/4 b. For the sound coming from the
rear of the flap, a value closer to b would seem appropriate. Therefore, results are
presented for both the cases bo/b =1/4 and bo/b =1.

Discussion of results. - Results are presented for the 6= 7/2, 6= 7/4, and

Y = 0 planes.
6 = 1/2 plane: Figures 10 to 16 are plots of the far-field self and shear noise in the
6 = 7/2 plane. The first two parts of these figures are polar plots of the self noise in

two different frequency ranges, and the last two are polar plots of the shear noise for
two different frequency ranges. Comparing the first and last parts of these figures
shows that the shear noise is always elongated in the direction of the duct axis (yl-
direction), whereas the self noise tends to radiate uniformly or laterally. This down-
stream beaming of the shear noise is caused by the fact that, in the 6 = 7/2 plane, only
the longitudinal quadrupole in the yl—direction makes any contributions, whereas the self
noise is composed of this plus a number of other longitudinal and lateral quadrupoles.
These figures also show that at any given frequency, the shear-noise curves have much
fewer lobes than the self-noise curves. This can also be attributed to the longitudinal
quadrupole nature of the shear noise since the high directivity of this quadrupole in the
downstream direction allows it to be beamed out of the duct without interacting with the
walls. There is, therefore, much less interference due to reflections and diffraction by
the duct than in the more uniformly directed self noise.

Figures 10 and 11 are identical except that the direction of the convection velocities
Mc is reversed. The self-noise curves with Mc in the positive direction have much
weaker lobes than those with Mc in the negative direction. The reason for this is that
the convective effects tend to beam the self noise in the direction of motion. Thus, when
M c is in the positive direction, the sound is beamed out of the duct. This beamed pat-
tern will then interact to a lesser extent with the channel walls than when M, is nega-
tive. However, the already highly directional shear-noise patterns show no significant
additional beaming due to convection, and their directivity patterns are therefore quite
similar. Figures 12 and 13 show the effect of decreasing the Mach number M, from
0.8 to 0.3 (with a corresponding decrease in Mc)' Comparing figure 12 with figure 10
shows that increasing the magnitude of the convection velocity in the negative direction
causes a marked decrease in intensity with no significant change in the shape of the
directivity patterns. Comparing figure 13 with figure 11 shows that increasing the con-
vection velocity in the positive direction causes a slight decrease in intensity with no
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significant change in the shape of the directivity patterns.

Most of the curves are drawn for the case where bo/b = 1/4. Figure 14 shows the
effect of putting bo/b = 1. A comparison of figures 11 and 14 shows that the curves for
bo/b = 1 exhibit less interference effects than those for bo/b = 1/4.

Figure 15 shows the effect of moving the turbulent source region away from the cen-
ter of the duct toward the upper wall (y2 > 0). Comparing this figure with figure 10
shows that this has little more effect on the shear noise than beaming it in a downward
direction. However, the self noise exhibits a complex change in the interference effects
as the source is moved toward the wall. This is probably related to the fact that the
antisymmetric mode can propagate within the duct when the source is off center.

Figure 16 shows the effect of moving the turbulent source point farther into the duct.
Comparing figures 10 and 16 shows that (for both self and shear noise) this causes very
little change in either the directivity pattern or the magnitude of the intensity.

6 = n/4 plane: Figure 17 is a plot of the far-field intensities for the 6 = n/4 plane.
This plane is (as shown in fig. 5) parallel to the 6 = 7/2 plane but shifted over from the
centerline of the duct. Upon comparing figures 10 and 17, we see that the shear-noise
curves on these two planes are similar. However, the figures show that the self-noise
intensity patterns exhibit weaker interference effects in the 6 = 7/4 plane than in the
6 = 7/2 plane.

Y = 0 plane: Figures 18 to 22 are plots of the far-field, self and shear noise in the
¢ = 0 plane, which corresponds to the y1y3—p1ane shown in figure 9. These plots are
arranged in the same way as those for the 0 = /2 plane. Thus, the first two parts of
these figures are polar plots of the self noise in two different frequency ranges, and the
last two are polar plots of the shear noise for two different frequency ranges. They also
correspond to the same values of Mc and M, as those for the 6 = 7/2 planes. These
figures are essentially plots of equations (108) and (109). It can be seen from these equa-
tions that the far-field intensities are independent of the source location within the duct.
Hence, unlike the previous cases, these coordinates no longer appear as parameters in
the plots. In addition, the quadrupoles in this plane take on a simple form and, hence,
cannot exhibit the interference effects which occurred in all other planes. Thus, the
curves in figures 18 to 22 are much smoother than those in the previous figures.

These figures also show that the self noise is more intense in the yl—direction (i.e.,
the direction along the duct axis) than in the direction perpendicular to this when the
convective Mach number Mc is positive, and that it is less intense along the yl—direction
than in the perpendicular direction when Mc is negative. The first two parts of fig-
ures 19 and 21 show that this elongation is much more pronounced at high convective
Mach numbers than at low Mach numbers. This is essentially the downstream beaming
effect caused by convective amplification, which occurs in jets. In fact, the order of
magnitude of the effect is about the same in the present case as it is for jets (ref. 8).

On the other hand, figures 10 to 16 show that the shapes of the directivity patterns in the
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6 = 7/2 plane are much more dominated by diffraction effects than by convection. Thus,
the far-field intensity pattern behaves in much the same way as for jet noise in the plane
of the duct and behaves in a much different fashion in the plane perpendicular to the duct.
The variation of the intensity with frequency in the y = 0 plane is much the same
as in the 6 = 7/2 plane. This is not surprising since the points at 6 = 7/2 in figures 18
and 21 correspond to the points with = 0 (from the same values of Mc’ M, , and fre-
quency) in the figures for the # = 7/2 plane. As in the case of jet noise, the results for
# = 0 are independent of Mc(ref. 8).

SUMMARY OF RESULTS

A theoretical description has been given of the sound emitted from a nearly parallel
turbulent shear flow confined to a region near solid boundaries. The analysis leads to
formulas which can be used to calculate the directivity of the spectra of the sound
emitted from a unit volume of turbulence located at an arbitrary point within the flow.

In order to use these results to calculate the sound emitted from any finite region of
turbulence, it is necessary to integrate the formulas over the region of turbulence.
This requires a knowledge of certain turbulence-correlation-length scales at each point
within the flow.

The results are applied to obtain the sound emitted from a unit volume of turbulence
located at an arbitrary point in a turbulent flow confined to the interior of an open-ended
semi-infinite duct. Numerical results for the spectral density of the far-field intensity
of the self and shear noise are obtained for this case. It is shown that the directivity
patterns in the plane of the duct are much the same as for jet noise; whereas those in
the plane perpendicular to this are considerably different, being dominated more by dif-
fraction effects than by convection effects. This is especially true at the higher fre-
quencies. The shear noise in the plane perpendicular to the duct is dominated by the
longitudinal quadrupole with its axis along the duct.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 11, 1972,
501-04.
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APPENDIX A

REDUCTION OF SELF-NOISE CORRELATION INTEGRALS

FOR AXISYMMETRIC TURBULENCE

It follows from equation (41) that

< 2
fRikle da =/[A Eijbiby + ABOyctEy + 05p8;8y) + AC(301,8;8) + 04301,k )

+ AD(O ;88,8 + 01856085 + 0qdificdy + Ondid ) + D2(51151j§k§z
+ 000908585 + 013010815 + Ol1iEid ) ¢ Bzéikﬁjl + BC(;.01;01,
+0709;013) + BDOyy 0438, + 83,8y ,85 + 05,0138y + 03,0 13¢ky)

* C2511"’1]'511<51z + CD(8 ;01,0158 + 01301201k *+ 0131%13%128k

+ 51j°1k°1z'51)] df (A1)

It can be seen by inspection of this equation that a suitable choice for the coefficient Ay

in equation (42) is

ay = [ A%l ar . /(2AD§1 5 Dz)(aliglz{ . alkgiz) aF (A2)

It follows from this equation that

Ay = A (A3)

a13 =212 (A4)

But upon using equations (A3) and (A4) we get
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T T T T T T T T T T
GiiCiadik * *11611911 * 222022822 * 233033833 * alz(GuGzz + GgaG11 + G11G33 + G33011) * a23(622G33 + Gaaczz)

) T T T T T T T T T T T
=211G11G11 + 222022679 * 233033033 * alZ(GIIGZZ + GppGiq + Gy1033 « G330y + CGaplsg Gssczz) +(agg - a12‘(‘322(;33 + Gaaczz)

T T T T T T T T T
= 211Gy 01 + 29pC9902 + 333833033 + alZ(Giiij - G161y - GpaGp - G33033> +lagy - 312)(622033 ' Gaaczz)

(A5)

T T T T T T
* (agq - 25)GyGyy + (Agp - 219)GpaGay + (agg - 815)Ga30gy + 215G Gjj + (agg - a12’(‘322‘333 + Gssczz)

By using equations (43) and (A5) and the remarks following equation (44), it can now
be seen by inspection of equation (Al) that

T ~ o~ —- T T T
GiijlfRikle df =2,9GyiGyj; + (pg - a12)<G2263:’, v G33G22>
2,2 2 2
N Guc;fl[au -a, +f(2ABg% « 2Ce2 + 20%3 + B2 + 2BC + 4BDE + C% + 4CDE,) d{]

2

2,22 2 -
+ Glzc'fzf(ngfgg + 2ABg2 + 2aB2 « 2aCe2 + 2D% + 8ADE ¢5 + 2B + 2BC + 4BDE,) df

2 . 2.2 2 .2 -
N Glsc'faf(‘ng%gg +2aBE2 + 2aBt2 + 2ace2 + 20%2 + 8aDg ¢f + 28% 4 2BC + 4BDE ) d

T 2 2 T 2 2\ e
+ 022G22[a22 - ayg +/(2AB£2 + B )dE':|+ G33G33[a33 - ayg +/(2ABg3 + B )d&]

2
. G23Gg3/(4A2£§£§ + 2ABEZ + 2ABt2 + 2B%) dF

By carrying out the integrations in polar coordinates, it can be verified that the coeffi-
cients of G12Gr1r2 and Gl3GT3 are equal and that the coefficients of G22Gr2r2 and

T 27 9 27 9
Gg4Ggq are equal (see eq. (A2) and recall that f cos“y dy = f sin“y dy).
0

0
Hence, it follows from equation (A2) that
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T ~ o - T _ T T)
GiijZfR-‘kle dE =2a19G;;Gyj + (g3 312)(022“’33 + G302
T A2 4 4AD£3 . 4D252 " ZABEZ . 2AC£2 ¥ BZ + 2BC + 4BDE; + C2 + 4CDE,) dE - aro
+ Gy;61q (A  + 1 1 1 1 1 1

2 2 2 2 2,2 2 2
' (Glchz * GlsG¥3)/(4A25§£2 + 2ABLZ « 2ABE] - 2ACt + 2D°85 + BADL Ep « 2B+ 2BC + 4BDE)) dF

T T 2,4 2 o2 R
+ (022G22 + 033033>[ﬁA £, + 2ABL, + B y dE 312]

. (A6)
. 6230"53/(4A2g§g§ + 2ABES + 2ABE] + 2B%) df

Now it follows from equation (40) that

2

R - A%+ 2aBed 2act2 + 4ADs3 + B? + 2BC + 4BDE + c? + 4cpg + 4D%3

~2 2,2,.2 2 22
R12 =A 51’;2 + 2AD£1§2 + D ‘g’z
2(R{y + Ry Rgg) = 4A"E7ES + BADE (&5 + 2D + 2ABEy

+ 2ACE2 + 2ABg2 + 2B% + 2BC + 4BD,

B2, - A5+ 2ABt2 + B
N2 ,2,2,2
Ry3 = AE5E3

Hence, it follows from these relations and equation (A2) that equation (A6) can be written

as
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T 5 8 = T (52 =~ T T\ [fx2 a2\ .~
Giijl/Rikle g = Gnij_/Rm g <G22033 * G33G22>_/<R23 - R12) d

T (2 =2\ . T ™ 52 5 & \ar
+ G11G11,/<R11 - R12) dé + 2<G12G12 + G13G13>/(R12 + R11R:22) d

fﬁr‘

T T\ 2 a2\ .~ T [fx2 2
* (Gzszz + G33G33>f<R22 - R12> b + 2023G23_/(R22 - R23) d

The particular form of the last integral has been obtained by introducing polar coordi-
nates and carrying out the integration over the angle variable.
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APPENDIX B

REDUCTION OF SHEAR-NOISE CORRELATION INTEGRALS
FOR AXISYMMETRIC TURBULENCE

It follows from interchanging names of dummy indices in equation (49) that

T ] "o _ T 17T T 1t
G1lez/U U'"Ry; df = Glell/UU AfiE df + GliGlifU'U B df

T T A LA T | e
+ (Gle11 + G11G13>/U U ng df + GllGll_/U urc df

(B1)

Upon noting that A is an even function of £, for i =1, 2, 3; that U' and U" are
functions only of gz; and that any integral of an odd function of ‘Ei for i=1, 2, 3 is
zero, we find that

T X v o_ T 7T 2
Glell U'y Ag].gl d¢ = GleljfU U Agj dt
And since D is an even function of I;z and £3 and an odd function of ‘51
T T 1 te _ T 1 1t
(Gleu + G11G1j>/U U ng df = 2G11G11fU U"'DEy df

Hence, equation (B1) becomes

T TR T o T 3 3LA] 2 F
Glell/UU le dg —GllGllfUU (A£1+B+C+2D§1)d§

+ GIZG}"Z/U'U"(Agg + B)df + G13G"f3/U'U"(Ag§ + B)df
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We can therefore write from equation (40) that

T 1 "~ — T ] l'~
GlellfUU Ry, df = GleljfUU Rjj aF
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APPENDIX C

REDUCTION OF SELF-NOISE CORRELATION INTEGRALS
FOR ISOTROPIC TURBULENCE

It is shown in reference 4 that the requirements of continuity dictate that

4A + £ PA L 1EB
g & ¢

where ¢ = |E] and that this in turn implies that (see ref. 10) there exists a function F
such that

1 oF

28 oF
(C1)

B:F+l££
2 8¢

Substituting these results into equation (55) shows that

.~ 1, .. 1 &bk | 1, 1550 ] =
ﬁikajldg _/[(F+E§F)5ik--2- g F] [<F+E§F>6jl—§——g——F d
2 £:& £:€
1,.\% .7 1 1, o) pof 2iCk it -
=5ik6jlf(F+E£F) R —E/(F+E§F)F<-—£-—5jl+ g oik>d£
R A R S
4 ;2

where we have put

oF
ct

5|
1
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Upon introducing spherical coordinates and carrying out the integrations over the angle
variables, this becomes

~ ~ © 2 1 13 1 A
/Rikledgztlnéikéjl{ £ (F+EgF)(F+—6§F)d§

o0
m 2 02
= Oy + O3xdyg + 8370 ,{ ESEF) a

But
w 2|p2 , 2 i FR l(iF')z]d}é
/‘ 52(F+éng)(F+%£F') d&zfmi [F NPT

3
0 (C2)

0 2 2
e .2 Ne2qr + L E4(EFY)” dE
+/ (—EFF ggFF)ﬁ £ /0
0

Now we must require that the integral / ﬁij df remain finite. Hence, it follows
[~e]
from equations (55) and (C1) that this implies that _/ F£2 d{ remain finite. Hence,
0

F must approach zero faster than 5-3 as f{ - «. This shows that the integrated term
in equation (C2) vanishes and we obtain

~ A _ T 1 2 , 2
/Rikle df 'g[aik‘sjz +5 O30k + Oycdyy + Gilékj):’ ./0 E°(EF")” dg
and since, in particular,
fﬁ%l df = 87 / gz(g Fv)z dt
15 <0

it follows that

~ v = 1 ~2 -—
/Rikle @ =2 [ﬁoikojl #8400 + Gilﬁkj] S#2 a
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It now follows from equations (47) and (48) that

T fx2 .
Qijzngndg for i,j=1,2,3

and
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APPENDIX D

REDUCTION OF SHEAR-NOISE CORRELATION INTEGRALS
FOR ISOTROPIC TURBULENCE

Substituting equation (56) into equation (55) shows that

2

~J g.
vk, df =  vur|F+lep 12l P} dF (o sum on j)

1] 9 2 ¢

Upon introducing cylindrical coordinates with the axial direction along the £2-a.xis and
u? =52 + 2, we find that

SuurRy o - fU'U"R33 aF

nd
. _ 2 1,1, 2
U'U"R,, df = 27 Uly, - = F+=¢tF [1--2||edudE
22 2 2
2 2 2
3
- 00 O

But since £2 = p2 + gg

a

-/.® F(£)t d& =0
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where the dependence of F on 7 has been suppressed. Hence,

fU'U"Rzz dF = 0
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Cl, Cz, 03

APPENDIX E

SYMBOLS

coefficient in tensor Rij
defined by eq. (106)

constant

coefficient in eq. (42)

coefficient in tensor Rij

one-half of distance separating semi-infinite parallel plates

coefficient first appearing in eq. (42)

jet radius
b/nr, n=1, 2,83, ...
b n-1,2 3, ...

2
2
coefficient in tensor Rij

Euler's constant, 0.5772 . . .

coefficient in eq. (42)

speed of sound in medium of density Po and pressure Po
constants

coefficient in tensor ﬁij

defined by eq. (106)

defined by eq. (87)

defined by eq. (C1)

Green's function at X due to point source at y
226E|F)/ ay; 3y,

Gij(f |¥), where ¥ dependence has been suppressed
G;‘j(ir' + ﬁcT)

spectral density of Green's function

defined by eqs. (72) and (73)

ST



G, (¥ |y{1yg) defined by egs. (75) and (76)

G
Oij

L (a)
L' (8,

£.aV)

defined by eq. (95)
defined by eq. (98)

defined by eqs. (103) and (104), m =1, 2
free-space Green's function

wave function for plane wave (eq. (68))

spectral density of far-field intensity at

spectral density of far-field intensity at

located at y

unit vector in yl-direction
defined by eq. (97)
defined by eq. (89)

wave number

wfm)

/¢,

k sin 6

ws,‘m)/c0

defined by eq. (90)

convection Mach number of eddy

-—

X

X

Mach number characteristic of turbulence

typical length associated with distances between boundaries

due to unit volume of source

far-field intensity from a monopole source of unit strength

defined by eq. (97)

K_ [Bv—(l/Z)] with factor corresponding to n = v omitted

turbulence correlation length defined by eq. (37)

L_(BV) with factor corresponding to n = v omitted

fourth time derivative of L evaluatedat 7=0
turbulence correlation length defined by eq. (60)
fourth time derivative of ./ evaluatedat 7 =0

typical correlation length associated with turbulent eddies



Ry 7, &, 7),
Rij (E,7)
Ry, E,7)
i, jk

ik E>7)
Rl Rijts

(2) p+
Qijkz’ ijki’
C
ijkl
r

S
S

m oo @

jet- exit Mach number

defined by eq. (95)

component of unit normal in ith direction

unit normal

Fourier transform of p - Py

pressure

pressure tensor

average pressure

defined by eq. (47)

radius of curvature in direction of flow

fourth-order moving-axis velocity correlation functions defined in
eq. (28)

second-order moving-axis velocity correlation function (eq. (34))

third-order moving-axis velocity correlation function defined in eq. (35)

fourth-order moving-axis velocity correlation function defined by eq. (33)

fourth-order velocity correlation functions (eqs. (17) to (20) and
eq. (24))

distance of observation point from origin
(48)

(88)

(96)

(100)

defined by eq.
defined by eq.
defined by eq.
defined by eq.

defined by eq. (105)

defined by eq. (105)
surface
a large interval of time

Fourier transform of Tij
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U!'

< 2L ELF
S
(L&)

<

function of o appearing in expressions for Ki(a) and Li(a)

time

mean velocity in yl-direction

convection velocity of eddy

component of turbulent velocity in ith direction
Uy 6;'; t)

ui(gf.",t +7)

mean-square turbulent velocity

volumes for source integration

magnitude of velocity

th

component of velocity in i~ direction

XA
v§,ts 1)

normal velocity component
components of X

coordinate of observation point
components of y

coordinate of source point

~ -—

g’.*’ (inl-n)

-~ —

2
1
= (inqg +7)
9 1

+

<y

complex wave number variable

imaginary part of «

defined by equation immediately preceding eq. (95)
defined by eq. (86)

Kronecker delta



Tij
¢ (W 1yy,¥9)
X1 (@)

Xo(@)
vx|y)

v 60,9 y)
14

w

(1)

oD, o)
Subscripts:
se

sh

Superscripts:

1,2,3

Dirac delta function with argument (X - y)

magnitude of 7

component of 7 in ith girection
'}'j’vv - S‘,‘v
'}',’v _ g;n

polar angle measured from y3—direction

wavelength

radial coordinate in cylindrical coordinates

7O

density

ambient density

real part of «

time translation

stress tensor

solution to boundary-value problem given by eqs. (78) and (79)
function appearing in expression for K i(oz)

function appearing in expression for L i(oz)

component of Green's function (eq. (64))

factor occurring in ¥ (X |¥) which is solution to egs. (70) and (71)
azimuthal angle in ylyz—plane measured from yq-axis

angular frequency

characteristic angular frequencies appearing in time-dependent part of
velocity correlation function (eq. (101))

self-noise component

shear-noise component

time average
complex conjugate

components of vector
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10.

11.

12.

13.

14,

15.
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Figure 9. - Observation plane corresponding to § = 0.
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number of eddy M, = -0.4; jet-exit Mach number Mg = 0.8; y3/b = -1; yo/b = 3/4; and by/b = 1A,
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(d} Shear noise, high-frequency range.

Figure 15. - Concluded.
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Figure 18, - Polar plot of directivity pattern for spectral density of far-field intensity as function of polar angle 8 in W=0 plane for convection Mach
number of eddy MC = -0.4; jet-exit Mach number M. = 0. 8; and radius ratio bO/b = 1/4.
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Figure 20. - Polar plot of directivity pattern for spectral density of far- field intensity as function of polar angle 8 in W =0
plane for convection Mach number of eddy M = -0.15; jet-exit Mach number M. = 0.3; and radius ratio by/b = 174,
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Figure 21. - Polar plot of directivity pattern for spectral density of far-field intensi
M « 0.15; jet-exit Mach number M, = 0.3; and radius ratio by/b = 174
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Figure 22. - Polar plot of directivity pattern for spectral density of far-field intensity as function of polar angle 8 in W
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